广东环科特种建筑工程有限公司

边坡支护工程-环科特种建筑工程承包-塘厦边坡支护工程

广东环科特种建筑工程有限公司

  • 主营产品:钢筋混凝土切割,混凝土打凿,建筑工程,房屋加固,错杆静压桩等
  • 公司地址:东莞市望牛墩镇杜屋社区16巷83号
咨询热线: 13686261878
立即咨询 QQ咨询
信息详情

边坡支护中选择合适的防护网类型至关重要,这直接关系到工程的安全性和稳定性。在选择时可以从以下方面入手:
首先应考虑的是**边坡的类型和要求**,如土质、岩质或混合类型的边坡等;以及具体的防护需求和环境条件(比如降雨强度),因为不同的环境和地质状况需要不同性能的材料和构造的支挡结构进行支撑加固处理。例如对于高度较高且坡度较陡的边破区域或者土壤性质较为松软的地区来说就需要选择更为坚固耐用的材料制成的产品来应对可能出现的落石及水土流失问题从而确保整体结构的稳固性不受影响并延长其使用寿命周期降低维护成本支出水平等等一系列因素都需要被纳入考量范畴之内进行综合评估分析判断之后才能做出终的决定方案出来以供后续工作顺利开展下去直至顺利完成全部项目内容为止了!一般来说常见的材质主要有钢丝绳网和聚纤维两种不同类型可供选择使用哦~其中前者具有更好的强度和耐久性表现呢而后者则更加轻便灵活易于安装施工操作一些啦~~当然具体还需要结合实际的应用场景和需求来进行定制化设计生产制作才行哟!!!
总之选择合适的边坡防护网的类型和规格应综合考虑各种实际需求和限制条件后才能得出佳解决方案哈!!







实现高铁沿线边坡毫米级变形控制,是一项融合精密设计、高精度施工与实时监测的系统工程,在于“主动控制、施作、实时反馈”。以下是关键技术与措施:
1.勘察与精细化设计:
*超前地质勘探:采用高密度电法、地质雷达、钻探取芯等手段,掌握岩土体结构、软弱夹层、地下水分布及潜在滑面。
*精细化数值模拟:建立三维地质力学模型,模拟不同支护方案下变形响应,预测毫米级潜在位移区域,优化支护参数(锚索/锚杆位置、长度、预应力,桩长、嵌固深度)。
*刚度匹配与协同设计:选择高强度、高刚度支护结构(如大吨位预应力锚索框架、深嵌岩抗滑桩、格构梁),并考虑不同结构(桩、锚、梁、板)间的协同工作效应,确保整体刚度满足毫米级控制要求。
2.高精度施工工艺与过程控制:
*预应力施加:采用高精度液压千斤顶(带数显压力表或荷载传感器)和配套设备,严格按照设计值分阶段、对称、匀速张拉锚索/锚杆。实施二次补偿张拉,消除锁定损失和土体蠕变影响。
*钻孔精度保障:使用导向钻具或测斜仪监控钻孔轨迹,确保锚索/锚杆定位和角度,避免因钻孔偏差导致预应力损失或受力不均。
*注浆质量控制:优化注浆配比(早强、微膨胀),控制注浆压力、流量和饱满度(采用袖阀管、二次劈裂注浆等),确保浆体与岩土体、锚固体紧密粘结,提高整体刚度和抗变形能力。
*信息化施工:在关键施工阶段(如开挖、支护施作)同步进行变形监测,根据实时数据微调施工参数和工序。
3.毫米级自动化监测与预警系统:
*高灵敏度传感器布设:在坡体关键部位(潜在滑面、支护结构受力点)密集布设自动化监测设备:
*表面位移:高精度全站仪(测量机器人)、GNSS接收机(亚毫米级解算)、分布式光纤(BOTDR/DAS)。
*深部位移:固定式测斜仪(精度0.02mm/m)、多点位移计。
*支护结构受力:锚索测力计、钢筋计、土压力盒。
*地下水位:自动水位计。
*实时传输与智能分析:数据通过物联网实时传输至云平台,利用算法(如小波分析、机器学习)识别毫米级异常变形趋势,区分施工扰动、环境因素(温度、降雨)与潜在失稳信号。
*阈值预警与闭环反馈:设定多级毫米级变形预警阈值(如单日变化量、累计变化量),触发不同级别预警。监测数据实时反馈至设计和施工方,用于评估支护效果,必要时启动应急预案或进行动态设计调整(如补充锚索)。
4.系统集成与闭环管理:
将地质勘察、精细化设计、高精度施工、毫米级监测与智能预警集成为统一平台,实现“设计-施工-监测-反馈-优化”的闭环管理,确保整个支护体系在服役期内持续满足毫米级变形控制要求。
总结:高铁边坡毫米级变形控制是系统性挑战,依赖地质认知、结构高刚度设计、施工毫米级精度执行以及覆盖全生命周期的实时毫米级监测预警。在于“主动预应力约束”、“结构高刚度保障”和“信息化动态调控”三者的协同,通过技术集成与闭环管理达成目标,为高铁安全运营提供坚实保障。

边坡治理中的“隐形”:地下水处理技术全解析
在边坡灾害中,地下水常扮演着“隐形”的角色——它无形无迹,却拥有着巨大破坏力。它会软化岩土体强度,在孔隙中产生渗透压力,如同潜伏的刺客,一点点瓦解边坡的稳定性,终诱发滑坡、崩塌等灾害。因此,有效治理地下水是边坡工程成败的关键。
直面“”的利器:技术解析
*明排截流:主动防御
*截水沟/排水沟:在边坡顶部或坡面设置,如同“护城河”,拦截并引导地表汇水远离坡体,减少入渗。
*平台排水沟:在坡面台阶上设置,防止雨水在平台上积聚下渗,是坡面防护的“排水卫士”。
*暗排疏导:打击
*水平排水孔:深入坡体内部的“”,直接排导深层滞水,降低地下水位。是治理深层地下水的手段。
*仰斜排水孔:角度向上倾斜,更利于排出特定结构面或软弱层中的地下水。
*排水盲沟/渗沟:填充透水材料的沟渠,像“地下暗河”一般收集并疏导浅层地下水或渗流水。
*虹吸排水:利用物理虹吸原理,无需动力,自动排出坡体深部积水,是节能的“自流排水”方案。
*深层控排:釜底抽薪
*排水隧洞/廊道:对于大型、深层或复杂滑坡体,如同“地下长城”,可大规模、系统性地降低深层地下水位,但造价较高。
*垂直井群:在坡体关键位置钻设抽水井,主动抽排地下水,快速形成降水漏斗,迅速缓解压力。
技术选择:因地制宜是关键
没有放之四海而皆准的方案。选择何种技术(或组合),需基于详尽的地质水文勘察,明确地下水的来源、分布、动态及与边坡结构的相互作用。同时考虑边坡规模、重要性、施工条件及成本等因素。例如,浅层滑移常用盲沟结合排水孔;大型深层滑坡则可能需隧洞与井群联合作用。
结语:
地下水这位“隐形”虽难缠,但通过科学勘察与选用排水技术(明排截流、暗排疏导、深层控排),我们便能有效削弱其破坏力,化“无形”为“可控”。将地下水处理融入边坡综合治理体系,方能真正保障工程安全,实现边坡的长治久安。